• Graduate Programs
    • Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
      • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Bun, M. and Kleibergen, F. (2022). Identification robust inference for moments-based analysis of linear dynamic panel data models Econometric Theory, 38(4):689--751.


  • Journal
    Econometric Theory

We use identification robust tests to show that difference (Dif), level (Lev), and nonlinear (NL) moment conditions, as proposed by Arellano and Bond (1991, Review of Economic Studies 58, 277–297), Ahn and Schmidt (1995, Journal of Econometrics 68, 5–27), Arellano and Bover (1995, Journal of Econometrics 68, 29–51), and Blundell and Bond (1998, Journal of Econometrics 87, 115–143) for the linear dynamic panel data model, do not separately identify the autoregressive parameter when its true value is close to one and the variance of the initial observations is large. We prove that combinations of these moment conditions, however, do so when there are more than three time series observations. This identification then solely results from a set of, so-called, robust moment conditions. These robust moments are spanned by the combined Dif, Lev, and NL moment conditions and only depend on differenced data. We show that, when only the robust moments contain identifying information on the autoregressive parameter, the discriminatory power of the Kleibergen (2005, Econometrica 73, 1103–1124) Lagrange multiplier (KLM) test using the combined moments is identical to the largest rejection frequencies that can be obtained from solely using the robust moments. This shows that the KLM test implicitly uses the robust moments when only they contain information on the autoregressive parameter.