• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Boonen, T. and Liu, F. (2022). Insurance with heterogeneous preferences Journal of Mathematical Economics, 102:.


  • Affiliated author
    Tim Boonen
  • Publication year
    2022
  • Journal
    Journal of Mathematical Economics

This paper studies an optimal insurance problem with finitely many potential policyholders. A monopolistic, risk-neutral insurer applies linear pricing, and cannot discriminate in the insurance premium rate. The individuals are endowed with exponential expected utility preferences, and there is heterogeneity in the risk-aversion parameters. We study two models. In the first model the individuals can self-select their insurance coverage given the market premium rate. We find that partial or no insurance is generally optimal, and the premium optimization can be reduced to a piecewise concave problem. In the second model, the insurer offers only one insurance contract and individuals can either buy it or not. We show that it is optimal for the insurer to offer a full insurance contract. The premium optimization problem is reduced to a discrete problem, where the premium is an indifference premium of one individual in the market. Since the risk-aversion parameters of individuals are generally unobserved, we also present a simulation-based framework in which we simulate the risk-aversion parameters of the individuals. We show that the model with finitely many policyholders converges to the model with a continuum of potential policyholders when the number of potential individuals increases.