• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Kleibergen, F. (2021). Efficient size correct subset inference in homoskedastic linear instrumental variables regression Journal of Econometrics, 221(1):78--96.


  • Journal
    Journal of Econometrics

We show that Moreira{\textquoteright}s (2003) conditional critical value function for likelihood ratio (LR) tests on the structural parameter in homoskedastic linear instrumental variables (IV) regression provides a bounding critical value function for subset LR tests on one structural parameter of several for general homoskedastic linear IV regression. The resulting subset LR test is size correct under weak identification and efficient under strong identification. A power study shows that it outperforms the subset Anderson–Rubin test with conditional critical values from Guggenberger et al. (2019a) when the structural parameters are reasonably identified and has slightly less power when identification is weak.