• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Kleibergen, F. (2021). Efficient size correct subset inference in homoskedastic linear instrumental variables regression Journal of Econometrics, 221(1):78--96.


  • Journal
    Journal of Econometrics

We show that Moreira{\textquoteright}s (2003) conditional critical value function for likelihood ratio (LR) tests on the structural parameter in homoskedastic linear instrumental variables (IV) regression provides a bounding critical value function for subset LR tests on one structural parameter of several for general homoskedastic linear IV regression. The resulting subset LR test is size correct under weak identification and efficient under strong identification. A power study shows that it outperforms the subset Anderson–Rubin test with conditional critical values from Guggenberger et al. (2019a) when the structural parameters are reasonably identified and has slightly less power when identification is weak.