He, Y., Hou, Y., Peng, L. and Sheng, J. (2019). Statistical Inference for a Relative Risk Measure Journal of Business and Economic Statistics, 37(2):301--311.
-
Affiliated author
-
Publication year2019
-
JournalJournal of Business and Economic Statistics
For monitoring systemic risk from regulators{\textquoteright} point of view, this article proposes a relative risk measure, which is sensitive to the market comovement. The asymptotic normality of a nonparametric estimator and its smoothed version is established when the observations are independent. To effectively construct an interval without complicated asymptotic variance estimation, a jackknife empirical likelihood inference procedure based on the smoothed nonparametric estimation is provided with a Wilks type of result in case of independent observations. When data follow from AR-GARCH models, the relative risk measure with respect to the errors becomes useful and so we propose a corresponding nonparametric estimator. A simulation study and real-life data analysis show that the proposed relative risk measure is useful in monitoring systemic risk.