• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Creal, D., Koopman, S.J., Lucas, A. and Zamojski, M. (2024). Observation-driven filtering of time-varying parameters using moment conditions Journal of Econometrics, 238(2):.


  • Affiliated authors
    Siem Jan Koopman, Andre Lucas
  • Publication year
    2024
  • Journal
    Journal of Econometrics

We develop a new and flexible semi-parametric approach for time-varying parameter models when the true dynamics are unknown. The time-varying parameters are estimated using a recursive updating scheme that is driven by the influence function of a conditional moments-based criterion. We show that the updates ensure local improvements of the conditional criterion function in expectation. The dynamics are observation driven, which yields a computationally efficient methodology that does not require advanced simulation techniques for estimation. We illustrate the new approach using both simulated and real empirical data and derive new, robust filters for time-varying scales based on characteristic functions.