• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Boswijk, \H.Peter\, Laeven, \RogerJ.A.\ and Vladimirov, E. (2024). Estimating option pricing models using a characteristic function-based linear state space representation Journal of Econometrics, 244(1):.


  • Journal
    Journal of Econometrics

We develop a novel filtering and estimation procedure for parametric option pricing models driven by general affine jump-diffusions. Our procedure is based on the comparison between an option-implied, model-free representation of the conditional log-characteristic function and the model-implied conditional log-characteristic function, which is functionally affine in the model's state vector. We formally derive an associated linear state space representation and the asymptotic properties of the corresponding measurement errors. The state space representation allows us to use a suitably modified Kalman filtering technique to learn about the latent state vector and a quasi-maximum likelihood estimator of the model parameters, for which we establish asymptotic inference results. Accordingly, the filtering and estimation procedure brings important computational advantages. We analyze the finite-sample behavior of our procedure in Monte Carlo simulations. The applicability of our procedure is illustrated in two case studies that analyze S\&P 500 option prices and the impact of exogenous state variables capturing Covid-19 reproduction and economic policy uncertainty.