• Graduate Programs
    • Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
      • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Opschoor, A., Lucas, A. and Rossini, L. (2025). The Conditional Autoregressive F-Riesz Model for Realized Covariance Matrices Journal of Financial Econometrics, 23(2):1--29.


  • Journal
    Journal of Financial Econometrics

We introduce a new model for the dynamics of fat-tailed (realized) covariance-matrix-valued time-series using the F-Riesz distribution. The model allows for heterogeneous tail behavior across the coordinates of the covariance matrix via two vector-valued degrees of freedom parameters, thus generalizing the familiar Wishart and matrix-F distributions. We show that the filter implied by the new model is invertible and that a two-step targeted maximum likelihood estimator is consistent. Applying the new F-Riesz model to U.S. stocks, both tail heterogeneity and tail fatness turn out to be empirically relevant: they produce significant in-sample and out-of-sample likelihood increases, ex-post portfolio standard deviations that are in the global minimum variance model confidence set, and economic differences that are either in favor of the new model or competitive with a range of benchmark models.