• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Hommes, C., He, M., Poledna, S., Siqueira, M. and Zhang, Y. (2024). CANVAS: A Canadian behavioral agent-based model for monetary policy Journal of Economic Dynamics and Control, :.


  • Journal
    Journal of Economic Dynamics and Control

We develop the Canadian behavioral Agent-Based Model (CANVAS) that complements traditional macroeconomic models for forecasting and monetary policy analysis. CANVAS represents a next-generation modeling effort featuring enhancements in three dimensions: introducing household and firm heterogeneity, departing from rational expectations, and modeling price and quantity setting heuristics within a production network. The expanded modeling capacity is achieved by harnessing large-scale Canadian micro- and macroeconomic datasets and incorporating adaptive learning and simple heuristics. The out-of-sample forecasting performance of CANVAS is found to be competitive with a benchmark vector auto-regressive (VAR) model and a DSGE model. When applied to analyze the COVID-19 pandemic episode, our model helps explain both the macroeconomic movement and the interplay between expectation formation and cost-push shocks. CANVAS is one of the first macroeconomic agent-based models applied by a central bank to support projection and alternative scenarios, marking an advancement in the toolkit of central banks and enriching monetary policy analysis.