• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Assessing Synthetic Control Estimation of Treatment Effects in Linear Panel Data Models with Multifactor Errors
Research Master Pre-Defense

Assessing Synthetic Control Estimation of Treatment Effects in Linear Panel Data Models with Multifactor Errors


  • Series
    Research Master Defense
  • Speaker
    Timo Schenk
  • Location
    Online
  • Date and time

    August 27, 2020
    10:00 - 11:00

I study bias reduction properties of Synthetic Control (SC) estimators in settings in which both time fixed effects estimation and difference-in-differences estimation are biased. I assume a multifactor error model in which the treatment assignment depends on unobserved unit-specific characteristics. I show how the SC estimator (Abadie, Diamond, and Hainmueller, 2010) and the demeaned SC estimator (Ferman and Pinto, 2019) reduce the bias under balancing conditions on the confounding characteristics. Monte Carlo evidence suggests that their finite sample performance depends on sufficient penalization of the weight estimation. I revisit the study on the effect of the German reunification (Abadie, Diamond, and Hainmueller, 2015) as an empirical application.