• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Real-time Personalization
Seminar

Real-time Personalization


  • Series
    Brown Bag in Business Economics - Marketing
  • Speaker
  • Field
    Empirical Microeconomics
  • Location
    Erasmus University Rotterdam, Campus Woudestein, Room C1-06
    Rotterdam
  • Date and time

    May 12, 2022
    12:00 - 13:00

Abstract
Real-time recommendation engines enable effective personalization in e-commerce. Yet, the development of such engines is not trivial. It remains challenging to optimize across many options, especially while utilizing context information in real time.

To meet these challenges, we aim to provide an easy-to-implement personalization method to support online retailers and marketers in making fast adaptive decisions.

We formalize the personalization problem under the multi-armed bandit framework and propose a new contextual bandit algorithm based on the particle-filtering technique. Our method allows firms to flexibly introduce new personalized options, calibrate their impact using prior knowledge from historical data and rapidly update these prior beliefs as new observations arrive. In an application to news-article recommendation, we show that the proposed method achieves a Click-Through-Rate (CTR) of 5.96%, compared to the state-of-the-art methods such as UCB and LinUCB which achieve a CTR of 5.44% and 5.97%, respectively.


Registration
For catering purposes, please let us know if you will be joining us by filling in the onlineform.