• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Dynamic CoVaR Modeling
Seminar

Dynamic CoVaR Modeling


  • Location
    Erasmus University Rotterdam, Campus Woudestein, ET-14
    Rotterdam
  • Date and time

    March 19, 2024
    11:30 - 12:30

Abstract: The popular systemic risk measure CoVaR (conditional Value-at-Risk) is widely used in economics and finance. Formally, it is defined as a large quantile of one variable (e.g., losses in the financial system) conditional on some other variable (e.g., losses in a bank’s shares) being in distress. In this article, we propose joint dynamic forecasting models for the Value-at-Risk (VaR) and CoVaR. We also introduce a two-step M-estimator for the model parameters drawing on recently proposed bivariate scoring functions for the pair (VaR, CoVaR). We prove consistency and asymptotic normality of our parameter estimator and analyze its finite-sample properties in simulations. Finally, we apply a specific subclass of our dynamic forecasting models, which we call CoCAViaR models, to log-returns of large US banks. It is shown that our CoCAViaR models generate CoVaR predictions that are superior to forecasts issued from current benchmark models.