• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | New rank-based tests and estimators for Common Primitive Shocks
Seminar

New rank-based tests and estimators for Common Primitive Shocks


  • Location
    University of Amsterdam, room E5.22
    Amsterdam
  • Date and time

    November 08, 2024
    12:30 - 13:30

Abstract

We propose a new rank-based test for the number of common primitive shocks q in large panel data. After estimating a VAR(1) model on r static factors extracted by principal component analysis, we estimate the number of common primitive shocks by testing the rank of the VAR residuals’ covariance matrix. Our new rank test is based on the asymptotic distribution of the sum of the smallest r − q eigenvalues of the residuals’ covariance matrix. We develop both plug-in and bootstrap versions of this eigenvalue-based test. The eigenvectors associated to the q largest eigenvalues allow us to construct an easy-to-implement estimator of the common shocks and to derive its asymptotic properties. We consider applications of the new tests and estimators on panels of macro-financial variables and individual stocks volatilities. Joint paper with Federico Carlini (LUISS, Rome) and Pierluigi Vallarino (Erasmus University of Rotterdam)