• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
Home | Events Archive | Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
Seminar

Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels


  • Location
    Erasmus University Rotterdam, Campus Woudestein, ET-14
    Rotterdam
  • Date and time

    March 06, 2025
    12:00 - 13:00

Abstract

We develop a nonparametric, kernel-based joint estimator for conditional mean and covariance matrices in large and unbalanced panels. The estimator is supported by rigorous consistency results and finite-sample guarantees, ensuring its reliability for empirical applications in Finance. We apply it to an extensive panel of monthly US stock excess returns from 1962 to 2021, using macroeconomic and firm-specific covariates as conditioning variables. The estimator effectively captures time-varying cross-sectional dependencies, demonstrating robust statistical and economic performance. We find that idiosyncratic risk explains, on average, more than 75\% of the cross-sectional variance.