• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Disentangling Structural Breaks in Factor Models for Macroeconomic Data
Seminar

Disentangling Structural Breaks in Factor Models for Macroeconomic Data


  • Location
    Erasmus University Rotterdam, Campus Woudestein, ET-14
    Rotterdam
  • Date and time

    May 01, 2025
    12:00 - 13:00

Abstract
Through a routine normalization of the factor variance, standard methods for estimating factor models in macroeconomics do not distinguish between breaks of the factor variance and factor loadings. We argue that it is important to distinguish between structural breaks in the factor variance and loadings within factor models commonly employed in macroeconomics as both can lead to markedly different interpretations when viewed via the lens of the underlying dynamic factor model. We then develop a projection-based decomposition that leads to two standard and easy-to-implement Wald tests to disentangle structural breaks in the factor variance and factor loadings. Applying our procedure to U.S. macroeconomic data, we find evidence of both types of breaks associated with the Great Moderation and the Great Recession. Through our projection-based decomposition, we estimate that the Great Moderation is associated with an over 60% reduction in the total factor variance, highlighting the relevance of disentangling breaks in the factor structure.