• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Markets with Frictions
      • The Economics of Crime
      • Development Economics
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | People | Anne Opschoor
 placeholder

Anne Opschoor

Research Fellow

University
Vrije Universiteit Amsterdam
Research field
Finance
Interests
Applied Econometrics, Econometrics, Finance, Financial Econometrics, Risk Management

Biography

Anne Opschoor is Associate Professor at the Department of Finance at Vrije Universiteit Amsterdam.

Key publications

List of publications

Opschoor, A., Lucas, A. and Rossini, L. (2025). The Conditional Autoregressive F-Riesz Model for Realized Covariance Matrices Journal of Financial Econometrics, 23(2):1--29.

D'Innocenzo, E., Lucas, A., Opschoor, A. and Zhang, X. (2024). Heterogeneity and dynamics in network models Journal of Applied Econometrics, 39(1):150--173.

Opschoor, A. and Lucas, A. (2023). Time-varying variance and skewness in realized volatility measures International Journal of Forecasting, 39(2):827--840.

Opschoor, A., Lucas, A., Barra, I. and \van Dijk\, D. (2021). Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings Journal of Business and Economic Statistics, 39(4):1066--1079.

Opschoor, A. and Lucas, A. (2021). Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting International Journal of Forecasting, 37(2):622--633.

Opschoor, A. and Lucas, A. (2019). Fractional integration and fat tails for realized covariance kernels Journal of Financial Econometrics, 17(1):66--90.

Koopman, \.J., Lit, R., Lucas, A. and Opschoor, A. (2018). Dynamic discrete copula models for high-frequency stock price changes Journal of Applied Econometrics, 33(7):966--985.

Opschoor, A., Janus, P., Lucas, A. and \Van Dijk\, D. (2018). New HEAVY Models for Fat-Tailed Realized Covariances and Returns Journal of Business and Economic Statistics, 36(4):643--657.

Kole, E., Markwat, T., Opschoor, A. and \Van Dijk\, D. (2017). Forecasting Value-at-Risk under Temporal and Portfolio Aggregation* Journal of Financial Econometrics, 15(4):649--677.

Opschoor, A., \Van Dijk\, D. and \van der Wel\, M. (2017). Combining density forecasts using focused scoring rules Journal of Applied Econometrics, 32(7):1298--1313.

Lucas, A., Opschoor, A. and Schaumburg, J. (2016). Accounting for Missing Values in Score-Driven Time-Varying Parameter Models Economics Letters, 148:96--98.

Opschoor, A., Taylor, N., \van der Wel\, M. and \van Dijk\, D. (2014). Order flow and volatility: An empirical investigation Journal of Empirical Finance, 28(September):185--201.

Opschoor, A., \van Dijk\, D. and \van der Wel\, M. (2014). Predicting volatility and correlations with Financial Conditions Indexes Journal of Empirical Finance, 29(13-113/III):435--447.

Hoogerheide, L., Opschoor, A. and \van Dijk\, H.K. (2012). A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation Journal of Econometrics, 171(2):101--120.