• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Blasques, F. and Duplinskiy, A. (2018). Penalized indirect inference Journal of Econometrics, 205(1):34--54.


  • Journal
    Journal of Econometrics

Parameter estimates of structural economic models are often difficult to interpret at the light of the underlying economic theory. Bayesian methods have become increasingly popular as a tool for conducting inference on structural models since priors offer a way to exert control over the estimation results. Similarly to Bayesian estimation, this paper proposes a penalized indirect inference estimator that allows researchers to obtain economically meaningful parameter estimates in a frequentist setting. The asymptotic properties of the estimator are established for both correctly and incorrectly specified models, as well as under strong and weak parameter identification. A Monte Carlo study reveals the role of the penalty function in shaping the finite sample distribution of the estimator. The advantages of using this estimator are highlighted in the empirical study of a state-of-the-art dynamic stochastic general equilibrium model.