• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Bräuning, F. and Koopman, \.J. (2020). The dynamic factor network model with an application to international trade Journal of Econometrics, 216(2):494--515.


  • Journal
    Journal of Econometrics

We introduce a dynamic network model with probabilistic link functions that depend on stochastically time-varying parameters. We adopt a blockmodel framework and allow the high-dimensional vector of link probabilities to be a function of a low-dimensional set of dynamic factors. The resulting dynamic factor network model has a basic and transparent structure. However, parameter estimation, signal extraction of stochastic loadings and dynamic factors, and the econometric analysis generally are intricate tasks for which simulation-based methods are needed. We provide feasible and practical solutions to these challenging tasks, based on a computationally efficient importance sampling procedure to evaluate the likelihood function. An extensive Monte Carlo study demonstrates the performance of our method in finite samples, both under correct and incorrect model specifications. In an empirical study, we use the novel framework to analyze global patterns of banana exports and imports. We identify groups of heavy and light traders in this highly active commodity market and their time-varying trade probabilities.