• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Atkinson, A.C., Koopman, S.J. and Shephard, N. (1997). Detecting shocks: Outliers and breaks in time series Journal of Econometrics, 80(2):387--422.


  • Journal
    Journal of Econometrics

A single outlier in a regression model can be detected by the effect of its deletion on the residual sum of squares. An equivalent procedure is the simple intervention in which an extra parameter is added for the mean of the observation in question. Similarly, for unobserved components or structural time-series models, the effect of elaborations of the model on inferences can be investigated by the use of interventions involving a single parameter, such as trend or level changes. Because such time-series models contain more than one variance, the effect of the intervention is measured by the change in individual variances. We examine the effect on the estimated parameters of moving various kinds of intervention along the series. The horrendous computational problems involved are overcome by the use of score statistics combined with recent developments in filtering and smoothing. Interpretation of the resulting time-series plots of diagnostics is aided by simulation envelopes. Our procedures, illustrated with four example, permit keen insights into the fragility of inferences to specific shocks, such as outliers and level breaks. Although the emphasis is mostly on parameter estimation, forecast are also considered. Possible extensions include seasonal adjustment and detrending of series.