• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Lucas, A., Schwaab, B. and Zhang, X. (2017). Modeling Financial Sector Joint Tail Risk in the Euro Area Journal of Applied Econometrics, 32(1):171--191.


  • Affiliated authors
    Andre Lucas, Bernd Schwaab
  • Publication year
    2017
  • Journal
    Journal of Applied Econometrics

We develop a novel high-dimensional non-Gaussian modeling framework to infer measures of conditional and joint default risk for numerous financial sector firms. The model is based on a dynamic generalized hyperbolic skewed-t block equicorrelation copula with time-varying volatility and dependence parameters that naturally accommodates asymmetries and heavy tails, as well as nonlinear and time-varying default dependence. We apply a conditional law of large numbers in this setting to define joint and conditional risk measures that can be evaluated quickly and reliably. We apply the modeling framework to assess the joint risk from multiple defaults in the euro area during the 2008-2012 financial and sovereign debt crisis. We document unprecedented tail risks between 2011 and 2012, as well as their steep decline following subsequent policy actions.