• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Donkers, B., Paap, R., Jonker, J. and Franses, P.H. (2006). Deriving Target Selection Rules from Endogenously Selected Samples Journal of Applied Econometrics, 21(5):549--562.


  • Journal
    Journal of Applied Econometrics

The selection of the most profitable customers in a customer database for targeted activities is often done based on observed behaviour in the past. Consequently, databases arising from the responses to, for example, direct mailings in the past are not random samples. When not all heterogeneity across customers is observed, target selection will be based on unobserved heterogeneity and hence it is endogenous. We develop a method to adjust the likelihood function of latent class models to correct for this endogenous sampling process. We apply this technique to the selection of mail targets for a Dutch charity. Based on a joint model for the response rate and the amount donated, we create a target selection rule that maximizes expected revenues.