• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Li, M. and Koopman, S. (2021). Unobserved components with stochastic volatility: Simulation-based estimation and signal extraction Journal of Applied Econometrics, 36(5):614--627.


  • Journal
    Journal of Applied Econometrics

The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation-based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.