• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Blasques, F., \van Brummelen\, J., Koopman, \.J. and Lucas, A. (2022). Maximum likelihood estimation for score-driven models Journal of Econometrics, 227(2):325--346.


  • Journal
    Journal of Econometrics

We establish strong consistency and asymptotic normality of the maximum likelihood estimator for stochastic time-varying parameter models driven by the score of the predictive conditional likelihood function. For this purpose, we formulate primitive conditions for global identification, invertibility, strong consistency, and asymptotic normality both under correct specification and misspecification of the model. A detailed illustration is provided for a conditional volatility model with disturbances from the Student's t distribution.