• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Blasques, F., Francq, C. and Laurent, S. (2024). Autoregressive conditional betas Journal of Econometrics, 238(2):1--22.


  • Journal
    Journal of Econometrics

This paper introduces an autoregressive conditional beta (ACB) model that allows regressions with dynamic betas (or slope coefficients) and residuals with GARCH conditional volatility. The model fits in the (quasi) score-driven approach recently proposed in the literature, and it is semi-parametric in the sense that the distributions of the innovations are not necessarily specified. The time-varying betas are allowed to depend on past shocks and exogenous variables. We establish the existence of a stationary solution for the ACB model, the invertibility of the score-driven filter for the time-varying betas, and the asymptotic properties of one-step and multistep QMLEs for the new ACB model. The finite sample properties of these estimators are studied by means of an extensive Monte Carlo study. Finally, we also propose a strategy to test for the constancy of the conditional betas. In a financial application, we find evidence for time-varying conditional betas and highlight the empirical relevance of the ACB model in a portfolio and risk management empirical exercise.