• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | News | Paper by Rogier Quaedvlieg Accepted in Econometrica
News | March 06, 2020

Paper by Rogier Quaedvlieg Accepted in Econometrica

The paper "Realized Semicovariances" co-authored by Rogier Quaedvlieg (Erasmus University Rotterdam) has been accepted for publication in Econometrica.

Paper by Rogier Quaedvlieg Accepted in Econometrica

The paper is joint work with Tim Bollerslev, Jia Li, and Andrew J. Patton (all Duke University, United States).

Read full paper here.

Abstract

We propose a decomposition of the realized covariance matrix into components based on the signs of the underlying high-frequency returns, and we derive the asymptotic properties of the resulting realized semicovariance measures as the sampling interval goes to zero. The first-order asymptotic results highlight how the same-sign and mixed-sign components load differently on economic information related to stochastic correlation and jumps. The second-order asymptotic results reveal the structure underlying the same-sign semicovariances, as manifested in the form of co-drifting and dynamic “leverage” effects. In line with this anatomy, we use data on a large cross-section of individual stocks to empirically document distinct dynamic dependencies in the different realized semicovariance components. We show that the accuracy of portfolio return variance forecasts may be significantly improved by exploiting the information in realized semicovariances.

Read more about this research work on the Erasmus School of Economics website.