• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Baştürk, N., Borowska, A., Grassi, S., Hoogerheide, L. and \van Dijk\, \H.K.\ (2019). Forecast density combinations of dynamic models and data driven portfolio strategies Journal of Econometrics, 210(1):170--186.


  • Affiliated authors
    Agnieszka Borowska, Herman van Dijk, Lennart Hoogerheide
  • Publication year
    2019
  • Journal
    Journal of Econometrics

A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.