• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Hommes, C., Sonnemans, J., Tuinstra, J. and van de Velden, H. (2007). Learning in cobweb experiments Macroeconomic Dynamics, 11(S1):8--33.


  • Journal
    Macroeconomic Dynamics

Different theories of expectation formation and learning usually yield different outcomes for realized market prices in dynamic models. The purpose of this paper is to investigate expectation formation and learning in a controlled experimental environment. Subjects are asked to predict the next period's aggregate price in a dynamic commodity market model with feedback from individual expectations. Subjects have no information about underlying market equilibrium equations, but can learn by observing past price realizations and predictions. We conduct a stable, an unstable, and a strongly unstable treatment. In the stable treatment, rational expectations (RE) yield a good description of observed aggregate price fluctuations: prices remain close to the RE steady state. In the unstable treatments, prices exhibit large fluctuations around the RE steady state. Although the sample mean of realized prices is close to the RE steady state, the amplitude of the price fluctuations as measured by the variance is significantly larger than the amplitude under RE, implying persistent excess volatility. However, agents' forecasts are boundedly rational in the sense that fluctuations in aggregate prices are unpredictable and exhibit no forecastable structure that could easily be exploited.Key Words: Expectations; Learning; Cobweb Dynamics; Excess Volatility.