• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Verhoef, E. (2005). Speed-flow relations and cost functions for congested traffic: theory and empirical analysis Transportation Research. Part A, Policy and Practice, 39(7-9):792--812.


  • Journal
    Transportation Research. Part A, Policy and Practice

A dynamic 'car-following' extension of the conventional economic model of traffic congestion is presented, which predicts the average cost function for trips in stationary states to be significantly different from the conventional average cost function derived from the speed-flow function. When applied to a homogeneous road, the model reproduces the same stationary state equilibria as the conventional model, including the hypercongested ones. However, stability analysis shows that the latter are dynamically unstable. The average cost function for stationary state traffic coincides with the conventional function for non-hypercongested traffic, but rises vertically at the road's capacity due to queuing, instead of bending backwards. When extending the model to include an upstream road segment, it predicts that such queuing will occur under hypercongested conditions, while the general shape of the average cost function for full trips does not change, implying that hypercongestion will not occur on the downstream road segment. These qualitative predictions are verified empirically using traffic data from a Dutch bottleneck. Finally, it is shown that reduced-form average cost functions, that relate the sum of average travel cost and average schedule delay costs to the number of users in a dynamic equilibrium, certainly need not have the intuitive convex shape, but may very well be concave - despite the fact that the underlying speed-flow function may be convex. © 2005 Elsevier Ltd. All rights reserved.