• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Cornea-Madeira, A., Hommes, C. and Massaro, D. (2019). Behavioral Heterogeneity in U.S. Inflation Dynamics Journal of Business and Economic Statistics, 37(2):288--300.


  • Affiliated authors
    Cars Hommes, Domenico Massaro
  • Publication year
    2019
  • Journal
    Journal of Business and Economic Statistics

In this article we develop and estimate a behavioral model of inflation dynamics with heterogeneous firms. In our stylized framework there are two groups of price setters, fundamentalists and random walk believers. Fundamentalists are forward-looking in the sense that they believe in a present-value relationship between inflation and real marginal costs, while random walk believers are backward-looking, using the simplest rule of thumb, naive expectations, to forecast inflation. Agents are allowed to switch between these different forecasting strategies conditional on their recent relative forecasting performance. We estimate the switching model using aggregate and survey data. Our results support behavioral heterogeneity and the significance of evolutionary learning mechanism. We show that there is substantial time variation in the weights of forward-looking and backward-looking behavior. Although on average the majority of firms use the simple backward-looking rule, the market has phases in which it is dominated by either the fundamentalists or the random walk believers.