• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Browse our Courses
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Dellaert, B., Donkers, B. and \van Soest\, A. (2012). Complexity Effects in Choice Experiment-Based Models Journal of Marketing Research, 49(3):424--434.


  • Affiliated authors
    Benedict Dellaert, Bas Donkers
  • Publication year
    2012
  • Journal
    Journal of Marketing Research

Many firms rely on choice experiment-based models to evaluate future marketing actions under various market conditions. This research investigates choice complexity (i.e., number of alternatives, number of attributes, and utility similarity between the most attractive alternatives) and individual differences in decision time as key factors that affect the predictive performance of models based on choice experiments, both within and between complexity conditions. The results show that complexity and individual decision time not only affect the error in consumer choice models but also consumers' decision strategy and systematic utilities. The authors introduce a complexity-adjusted mixed logit (CAM logit) model to capture the various influences of complexity in choice experiment-based models. They illustrate the consequences of complexity on choice behavior with market share predictions of the CAM logit model for different complexity conditions.