• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Noussair, \.(., \Soest, V.D. and Stoop, J. (2015). Cooperation in a Dynamic Fishing Game: A Framed Field Experiment (AER: Papers and Proceedings) American Economic Review, 105(5):1--7.


  • Affiliated author
  • Publication year
    2015
  • Journal
    American Economic Review

We derive a dynamic theoretical model of renewable resource extraction. In the social optimum, maximum extraction occurs in the last period only, while in the unique subgame perfect Nash equilibrium, the resource is depleted immediately. The predictions are tested in a field experiment conducted at a recreational fishing pond. The subjects, experienced recreational fishermen, face a dynamic social dilemma, in which they risk depletion of the resource by overfishing. We find strong support for the Nash equilibrium. Fishermen exert as much effort in the last period as in preceding periods, and effort is independent of the stock of fish.