• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Bollerslev, T., Medeiros, M., Patton, A. and Quaedvlieg, R. (2021). From Zero to Hero: Realized Partial (Co)Variances Journal of Econometrics, Forthcomin:.


  • Affiliated author
    Rogier Quaedvlieg
  • Publication year
    2021
  • Journal
    Journal of Econometrics

This paper proposes a generalization of the class of realized semivariance and semicovariance measures introduced by Barndorff-Nielsen et al. (2010) and Bollerslev et al. (2020a) to allow for a finer decomposition of realized (co)variances. The new “realized partial (co)variances” allow for multiple thresholds with various locations, rather than the single fixed threshold of zero used in semi (co)variances. We adopt methods from machine learning to choose the thresholds to maximize the out-of-sample forecast performance of time series models based on realized partial (co)variances. We find that in low dimensional settings it is hard, but not impossible, to improve upon the simple fixed threshold of zero. In large dimensions, however, the zero threshold embedded in realized semi covariances emerges as a robust choice.