• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Blasques, F., \van Brummelen\, J., Gorgi, P. and Koopman, \.J. (2024). Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions Journal of Econometrics, 238(1):.


  • Journal
    Journal of Econometrics

We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The time-varying location can be extended with a stationary process to account for cyclical and/or higher order autocorrelation. The mixed normal distribution can accurately approximate many continuous error distributions. We obtain a flexible modeling framework for the robust filtering and forecasting based on time-series models with non-stationary and nonlinear features. We provide sufficient conditions for strong consistency and asymptotic normality of the maximum likelihood estimator of the parameter vector in the specified model. The asymptotic properties are valid under correct model specification and can be generalized to allow for potential misspecification of the model. A simulation study is carried out to monitor the forecast accuracy improvements when extra mixture components are added to the model. In an empirical study we show that our approach is able to outperform alternative observation-driven location models in forecast accuracy for a time-series of electricity spot prices.