• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Billio, M., Casarin, R. and Iacopini, M. (2024). Bayesian Markov-Switching Tensor Regression for Time-Varying Networks Journal of the American Statistical Association, 119(545):109--121.


  • Affiliated author
    Matteo Iacopini
  • Publication year
    2024
  • Journal
    Journal of the American Statistical Association

Modeling time series of multilayer network data is challenging due to the peculiar characteristics of real-world networks, such as sparsity and abrupt structural changes. Moreover, the impact of external factors on the network edges is highly heterogeneous due to edge- and time-specific effects. Capturing all these features results in a very high-dimensional inference problem. A novel tensor-on-tensor regression model is proposed, which integrates zero-inflated logistic regression to deal with the sparsity, and Markov-switching coefficients to account for structural changes. A tensor representation and decomposition of the regression coefficients are used to tackle the high-dimensionality and account for the heterogeneous impact of the covariate tensor across the response variables. The inference is performed following a Bayesian approach, and an efficient Gibbs sampler is developed for posterior approximation. Our methodology applied to financial and email networks detects different connectivity regimes and uncovers the role of covariates in the edge-formation process, which are relevant in risk and resource management. Code is available on GitHub. Supplementary materials for this article are available online.