• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Camehl, A., Fok, D. and Gruber, K. (2024). On superlevel sets of conditional densities and multivariate quantile regression Journal of Econometrics, 249:.


  • Journal
    Journal of Econometrics

Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.