• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

\de Santis\, R., Goeman, \JelleJ.\, Hemerik, J., Davenport, S. and Finos, L. (2025). Inference in generalized linear models with robustness to misspecified variances Journal of the American Statistical Association, https://doi.org/10.1080/01621459.2025.2491775:.


  • Journal
    Journal of the American Statistical Association

Generalized linear models usually assume a common dispersion parameter, an assumption that is seldom true in practice. Consequently, standard parametric methods may suffer appreciable loss of Type I error control. As an alternative, we present a semi-parametric group-invariance method based on sign flipping of score contributions. Our method requires only the correct specification of the mean model, but is robust against any misspecification of the variance. We present tests for single as well as multiple regression coefficients. The test is asymptotically valid but shows excellent performance in small samples. We illustrate the method using RNA sequencing count data, for which it is difficult to model the overdispersion correctly. The method is available in the R library flipscores. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.