• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

\van Leeuwen\, B., Offerman, T. and \van de Ven\, J. (2022). Fight or Flight: Endogenous Timing in Conflicts Review of Economics and Statistics, 104(2):217–231.


  • Journal
    Review of Economics and Statistics

We study a dynamic game in which players compete for a prize. In a waiting game with two-sided private information about strength levels, players choose between fighting, fleeing, or waiting. Players earn a “deterrence value” on top of the prize if their opponent escapes without a battle. We show that this value is a key determinant of the type of equilibrium. For intermediate values, sorting takes place with weaker players fleeing before others fight. Time then helps to reduce battles. In an experiment, we find support for the key theoretical predictions, and document suboptimal predatory fighting.