• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Donkers, B., Paap, R., Jonker, J. and Franses, \.H. (2006). Deriving Target Selection Rules from Endogenously Selected Samples Journal of Applied Econometrics, 21(5):549--562.


  • Journal
    Journal of Applied Econometrics

The selection of the most profitable customers in a customer database for targeted activities is often done based on observed behaviour in the past. Consequently, databases arising from the responses to, for example, direct mailings in the past are not random samples. When not all heterogeneity across customers is observed, target selection will be based on unobserved heterogeneity and hence it is endogenous. We develop a method to adjust the likelihood function of latent class models to correct for this endogenous sampling process. We apply this technique to the selection of mail targets for a Dutch charity. Based on a joint model for the response rate and the amount donated, we create a target selection rule that maximizes expected revenues.