• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Menkveld, AlbertJ., Dreber, A., Holzmeister, F., Huber, J., Johanneson, M., Kirchler, M., Razen, M., Weitzel, U., Abad, D., Abudy, M.(., Adrian, T., Ait-Sahalia, Y., Akmansoy, O., Alcock, J., Alexeev, V., Aloosh, A., Amato, L., Amaya, D., Angel, JamesJ., Bach, A., Baidoo, E., Bakalli, G., Barbon, A., Bashchenko, O., Bindra, P.C., Bjonnes, G.H., Black, JeffreyR., Black, BernardS., Bohorquez, S., Bondarenko, O., Bos, CharlesS., Bosch-Rosa, C., Bouri, E., Brownlees, ChristianT., Calamia, A., Cao, V.N., Capelle-Blancard, G., Capera, L., Caporin, M., Carrion, A., Caskurlu, T., Chakrabarty, B., Chernov, M., Cheung, W.M.Y., Chincarini, LudwigB., Chordia, T., Chow, S.C., Clapham, B., Colliard, J., Comerton-Forde, C., Curran, E., Dao, T., Dare, W., Davies, RyanJ., De Blasis, R., De Nard, G., Declerck, F., Deev, O., Degryse, H., Deku, S., Desagre, C., Van Dijk, MathijsA., Dim, C., Dimpfl, T., Dong, Y.J., Drummond, P., Dudda, T., Dumitrescu, A., Dyakov, T., Dyhrberg, A.H., Dzieliński, M., Eksi, A., El Kalak, I., ter Ellen, S., Eugster, N., Evans, MartinD.D., Farrell, M., Félez-Viñas, E., Ferrara, G., FERROUHI, E.M., Flori, A., Fluharty-Jaidee, J., Foley, S., Fong, KingsleyY.L., Foucault, T., Franus, T., Franzoni, FrancescoA., Frijns, B., Frömmel, M., Fu, S., Füllbrunn, S., Gan, B., Gehrig, T., Gerritsen, D., Gil-Bazo, J., Glosten, LawrenceR., Gomez, T., Gorbenko, A., Güçbilmez, U., Grammig, J., Gregoire, V., Hagströmer, B., Hambuckers, J., Hapnes, E., Harris, JeffreyH., Harris, L., Hartmann, S., Hasse, J., Hautsch, N., He, X.'., Heath, D., Hediger, S., Hendershott, TerrenceJ., Hibbert, A.M., Hjalmarsson, E., Hoelscher, S., Hoffmann, P., Holden, CraigW., Horenstein, AlexR., Huang, W., Huang, D., Hurlin, C., Ivashchenko, A., Iyer, SubramanianR., Jahanshahloo, H., Jalkh, N., Jones, CharlesM., Jurkatis, S., Jylha, P., Kaeck, A., Kaiser, G., Karam, A., Karmaziene, E., Kassner, B., Kaustia, M., Kazak, E., Kearney, F., van Kervel, V., Khan, S., Khomyn, M., Klein, T., Klein, O., Klos, A., Koetter, M., Krahnen, J.P., Kolokolov, A., Korajczyk, RobertA., Kozhan, R., Kwan, A., Lajaunie, Q., Lam, F.Y.E.C., Lambert, M., Langlois, H., Lausen, J., Lauter, T., Leippold, M., Levin, V., Li, Y., Li, (.H., Liew, C.Y., Lindner, T., Linton, OliverB., Liu, J., Liu, A., Llorente-Alvarez, J., Lof, M., Lohr, A., Longstaff, FrancisA., Lopez-Lira, A., Mankad, S., Mano, N., Marchal, A., Martineau, C., Mazzola, F., Meloso, D.C., Mihet, R., Mohan, V., Moinas, S., Moore, D., Mu, L., Muravyev, D., Murphy, D., Neszveda, G., Neumeier, C., Nielsson, U., Nimalendran, M., Nolte, S., Nordén, LarsL., O'Neill, P., Obaid, K., Ødegaard, B.A., Östberg, P., Painter, M., Palan, S., Palit, I., Park, A., Pascual Gascó, R., Pasquariello, P., Pastor, L., Patel, V., Patton, AndrewJ., Pearson, NeilD., Pelizzon, L., Pelster, M., Pérignon, C., Pfiffer, C., Philip, R., Plíhal, T., Prakash, P., Press, O., Prodromou, T., Putnins, TalisJ., Raizada, G., Rakowski, DavidA., Ranaldo, A., Regis, L., Reitz, S., Renault, T., Wang, R., Renò, R., Riddiough, S., Rinne, K., Rintamäki, P., Riordan, R., RITTMANNSBERGER, T., Rodríguez Longarela, I., Rösch, D., Rognone, L., Roseman, B., Rosu, I., Roy, S., Rudolf, N., Rush, S., Rzayev, K., Rzeźnik, A., Sanford, A., Sankaran, H., Sarkar, A., Sarno, L., Scaillet, O., Scharnowski, S., Schenk-Hoppé, K.R., Schertler, A., Schneider, M., Schroeder, F., Schürhoff, N., Schuster, P., Schwarz, MarcoA., Seasholes, MarkS., Seeger, N., Shachar, O., Shkilko, A., Shui, J., Sikic, M., Simion, G., Smales, LeeA., Söderlind, P., Sojli, E., Sokolov, K., Spokeviciute, L., Stefanova, D., Subrahmanyam, MartiG., Neusüss, S., Szaszi, B., Talavera, O., Tang, Y., Taylor, N., Tham, W.W., Theissen, E., Thimme, J., Tonks, I., Tran, H., Trapin, L., Trolle, AndersB., Vaduva, M., Valente, G., Van Ness, RobertA., Vasquez, A., Verousis, T., Verwijmeren, P., Vilhelmsson, A., Vilkov, G., Vladimirov, V., Vogel, S., Voigt, S., Wagner, W., Walther, T., Weiss, P., van der Wel, M., Werner, IngridM., Westerholm, P.Joakim, Westheide, C., Wipplinger, E., Wolf, M., Wolff, ChristianC.P., Wolk, L., Wong, W.K., Wrampelmeyer, J., Wu, Z., Xia, S., Xiu, D., Xu, K., Xu, C., Yadav, PradeepK., Yagüe, J., Yan, C., Yang, A., Yoo, W., Yu, W., Yu, S., Yueshen, B.Z., Yuferova, D., Zamojski, M., Zareei, A., Zeisberger, S., Zhang, S., Zhang, X., Zhong, Z., Zhou, Z.Ivy, Zhou, C., Zhu, X., Zoican, M., Zwinkels, RemcoC.J., Chen, J., Duevski, T., Gao, G., Gemayel, R., Gilder, D., Kuhle, P., Pagnotta, E., Pelli, M., Sönksen, J., Zhang, L., Ilczuk, K., Bogoev, D., Qian, Y., Wika, HansC., Yu, Y., Zhao, L., Mi, M. and Bao, L. (2024). Non-Standard Errors The Journal of Finance, 79(3):2339--2390.


  • Journal
    The Journal of Finance

In statistics, samples are drawn from a population in a data- generating process (DGP). Standard errors measure the uncer- tainty in sample estimates of population parameters. In sci- ence, evidence is generated to test hypotheses in an evidence- generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sam- ple. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.